Combining invariant violation with execution path classification for

detecting multiple types of logical errors and race conditions

George Stergiopoulos', Panayiotis Katsaros' and Dimitris Gritzalis?

Unformation Security & Critical Infrastructure Protection Laboratory, Dept. of Informatics, Athens University of

Keywords:

Abstract:

Economics & Business, 76 Patission Ave., GR-10434, Athens, Greece
2Dept. of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
{geostergiop, dgrit} @aueb.gr, katsaros @csd.auth.gr

code classification, logical errors, dynamic invariants, source code, execution path, assertions, vulnerability,
exploit, automatic, analysis, information gain, fuzzy logic

Context: Modern automated source code analysis techniques can be very successful in detecting a priori de-
fined defect patterns and security vulnerabilities. Yet, they cannot detect flaws that manifest due to erroneous
translation of the software’s functional requirements into the source code. The automated detection of logical
errors that are attributed to a faulty implementation of applications’ functionality, is a relatively uncharted
territory. We propose a combination of automated analyses for logical error detection. As a proof of concept,
our method has been implemented in a prototype tool called PLATO that can detect various types of logical
errors. Potential logical errors are thus detected that are ranked using a fuzzy logic system with two scales
characterizing their impact: (i) a Severity scale, based on the execution paths’ characteristics and Information
Gain, (i) a Reliability scale, based on the measured program’s Computational Density. The method’s effec-
tiveness is shown using diverse experiments. Albeit not without restrictions, the proposed automated analysis

seems able to detect a wide variety of logical errors, while at the same time limiting the false positives.

1 Introduction

The sum of all functional requirements of an ap-
plication reflect the intended program behavior; that
is, what the programmer wants his code to do and
what not to do. During software development, func-
tional requirements are translated into source code.
A software error or fault is the difference between a
computed, observed, or measured value and the true,
specified or theoretically correct value or condition
inside the software code (Peng and Wallace, 1993). A
(software) vulnerability is a weakness in a system or
application that is subject to exploitation or misuse
(Scarfone et al., 2008). It is also defined as a mistake
in software that can be leveraged to gain access, vio-
late a reasonable security policy or force software to
exhibit unintended behavior (CVE, 2015).

Research on automated detection of software er-
rors and vulnerabilities has mainly focused on static
analysis and software model checking techniques that
are effective in detecting a priori specified errors
(e.g. Time Of Check - Time Of Use errors, null
pointer dereferences etc.), bad coding patterns and
some types of exploitable vulnerabilities (e.g. unsan-

itized input data, buffer overflows etc.). Yet, errors
related to the intended program functionality, which
are broadly called logical errors, are not a priori
known. In a code auditing process, they cannot be an-
alyzed as pattern-specific errors since they are rather
application-specific. At the level of the program’s ex-
ecution flow, these errors will cause execution diver-
sions that manifest as unintended program behaviour
(Felmetsger et al., 2010).

Since logical errors in an Application under
Test (AUT) are essentially execution deviations
from its intended functionality, their automated
detection needs to be based on some model of
the AUT’s operational logic. Such a model can
be inferred in the form of likely invariants from
the dynamic analysis of official executions of the
AUT’s functionality (i.e. execution of scenarios).
Dynamic invariants are properties that are likely
true at a certain point or points of the program
and, in effect, reveal information about the goal
behaviour, the particular implementation and the
environment (inputs) under which the program runs
(Ernst et al., 2007). Our method for the automated
detection of logical errors extends previous research

(Felmetsger et al., 2010) (Stergiopoulos et al., 2012)
(Stergiopoulos et al., 2013)(Stergiopoulos et al., 2014)
(Stergiopoulos et al., 2015b)
(Stergiopoulos et al., 2015a) by combining methods
utilized in vulnerability detection, albeit not for
logical errors. The same combination of tools was
used in the aforementioned articles, but there are
important differences and at the end, only basic
concepts from those works are kept. In PLATO,
dynamic invariants are evaluated using different
techniques. The tool is now capable of analyzing
the full range of instrumented invariants, while
keeping spurious invariants to a minimum using a
new classification system that uses the Information
Gain algorithm. Its present version implements two
new formal classifiers, which replace the previously
used empirical, text-based rules. Classification
functions are trained using data collections of known
code vulnerabilities from the National Institute of
Standards and Technology (NIST) to classify source
code paths using information gain algorithms.
Overall, the main contributions of this article are
summarized as follows:

1. We show how most types of information flow de-
pendent logical errors can be detected by classi-
fying invariant violations and their corresponding
execution paths based on information gain. Dan-
gerous source code methods recorded by major
databases are used as indicators of risk, according
to their appearance in real-world vulnerabilities.
PLATO’s logical error detections are classified in
two different groups of sets as follows:

e the Severity sets, quantifying the danger level
of an execution path 7 (the impact of an error,
if it were to manifest on path 7 during execu-
tion). Severity is based on an algorithm which
uses Information Gain for classification from
data mining.

o the Reliability sets, quantifying a path T with an
invariant violation based on the size and com-
plexity of the code traversed by path 7.

2. To test the diversity of errors that can be detected,
we develop and evaluate the PLATO tool on dif-
ferent AUTs containing logical errors that mani-
fest different types of vulnerabilities: (i) A multi-
threaded airline control ticketing system; previ-
ously used in a controlled experimentation with
program analysis. (ii) An aggregated AUT test-
bed that aims to evaluate PLATO’s Severity clas-
sification system using multiple vulnerable code
examples from NIST’s source code vulnerability
suite (Boland and Black, 2012).

2 Related Work

Recent developments in debugging techniques also
focus on the detection of logical errors, but they do
not aim to a fully automated program analysis. Delta
debugging (Zeller, 2002) is a state-altering technique
that systematically narrows the difference between
the states of a failed program run from the states
of a failure-free run, down to a small set of vari-
ables. The intuition is that any difference between
the two execution paths could be the failure cause.
Predicate switching is a variant of delta debugging
(Zhang et al., 20006) that alters predicate truth values
during of a program execution. Given a failing execu-
tion, the goal is to find the predicate that, if switched
from false to true or the opposite, it causes the pro-
gram to execute successfully. A limitation of state-
altering techniques is that they do not address the
problem of semantic consistency; there is no guaran-
tee that by altering a state the new execution path will
still be a valid program run (Baah, 2012). A second
limitation is the usability of this technique, since the
program has to re-run after every single state alterna-
tion. In our approach for detecting logical errors, state
alternation is avoided through the use of dynamic in-
variants along with a one-time symbolic execution of
the AUT.

In (Doupé et al., 2011), the authors focus exclu-
sively on the detection of specific flaws found in web
applications, whereas in (Balzarotti et al., 2007) web
applications are analyzed for multi-module vulnera-
bilities using a combination of analysis techniques.
However, both works do not address the problem of
profiling the source code behavior or detecting logi-
cal errors per se.

In (Godefroid et al., 2005), authors present DART
for automatically testing software that combines (1)
automated extraction of interface using static source-
code parsing, (2) automatic generation of a test driver
to perform random testing and simulate a general
environment and (3) dynamic analysis of how the
program behaves under random testing and automatic
generation of new test inputs to direct execution
along alternative program paths. DART detects errors
such as program crashes, assertion violations, and
non-termination. Although detections from DART
and from our approach will certainly occasionally
overlap, still DART cannot detect logical flaws that
do not lead to one of the aforementioned errors (e.g.
a program crash). If AUT execution terminates nor-
mally, DART cannot understand semantic differences
in functionality during similar executions. Our ap-
proach utilizes a basic notion and theory of this paper,
namely the fact that ”directed search usually provides

much better code coverage than a simple random
search” (Godefroid et al., 2005). Our approach
uses directed dynamic monitoring of executions to
provide functionality coverage and extract dynamic
invariants that can adequately describe functionality.
Certain types of logical errors in web applications
can be detected with the approach discussed in
(Felmetsger et al., 2010). A set of likely invariants
that characterize the execution of the AUTs is inferred
using the Daikon tool (Ernst et al., 2007)(dai, 2015).
The Daikon results are then wused in JPF
(Pasdreanu and Visser, 2004)(jpf, 2015) to model-
check the behavior of the AUT over symbolic
input. Our approach can be applied on any type of
standalone application (even GUI applications), with
no predefined mappings of inputs, which can range
over infinite domains (in (Felmetsger et al., 2010),
analysis is restricted to a web.xml file). To cope
with this difference, input vectors and infor-
mation flows are derived by monitoring user
executions. Variants of our method were pre-
sented previously in (Stergiopoulos et al., 2012)
and (Stergiopoulos et al., 2013). In
(Stergiopoulos et al., 2012), we specifically tar-
geted logical errors in GUI applications. We
described a preliminary deployment of a Fuzzy
Logic ranking system to mitigate the possibility of
false positives and we applied the method on lab
test-beds. In (Stergiopoulos et al., 2013), the Fuzzy
Logic ranking system was formally defined and
further developed. In this work, the method that
we first proposed in (Stergiopoulos et al., 2012),
(Stergiopoulos et al., 2013) and, more specifically,
in (Stergiopoulos et al., 2014) is evolved to a more
complete and effective approach with the capacity
to be applied to real-world, complex applications,
instead of test-beds and simple GUI AUTs. Specif-
ically, or current classification method is based on
specific, well-known data mining techniques for
source code classification ((Ugurel et al., 2002)),
trained upon a internationally accepted dataset
of example vulnerabilities (NIST’s Juliet Suite
(Boland and Black, 2012)) for dangerous source
code and corresponding inferred invariants. Previous
methodologies followed (Felmetsger et al., 2010) and
contributed an empirical classification mechanism
and test variations. (Stergiopoulos et al., 2015b)
was the first publication to detect logical errors in
real-world SCADA high-level software over the
MODBUS protocol, but neither its classification
system used any formal method, nor tests were
thorough enough to adequately present a detection
range.

3 Analysis Building Blocks

In this section, the main building blocks of PLATO’s
methodology are described, namely: (i) how the be-
haviour of an AUT is modeled using likely dynamic
invariants, (ii) how the obtained likely invariants are
verified through symbolically executing the AUT and
(iii) how the results are classified using fuzzy logic
to measure the impact and the size/complexity of the
affected code, for each detection.

3.1 Dynamic Invariants for profiling the
behavior of the source code

The functionality of an AUT is captured in the
form of dynamic invariants, generated by the Daikon
tool (Ernst et al., 2007)(dai, 2015). These invariants
are logical rules for variables (e.g. p!=null or
var=="string") that hold true at certain point(s) of
a program in all monitored executions. As far as
PLATOs tests is concerned, Daikons monitoring is a
type of functional testing. Functionality test suites
aim to verify that the AUT behaves correctly from
a business perspective and functions according to its
business requirements. A business requirement is ’a
condition or capability to which a system must con-
form” (Zielczynski,). It is a specific business be-
haviour of an application as observed by a user. Func-
tional test cases are used to validate the way an AUT
performs in accordance to those requirements.

The generated dynamic invariants can reflect the
intended functionality of the AUT, if they are derived
from monitored executions of representative use-case
scenarios. To achieve adequate coverage during func-
tional testing, we adopt two typical rules of thumb:

First, we require a test case for each possible
flow of events inside a use case (this corresponds
to a diagram path in a UML use case diagram
(Zielczynski,)).

Second, we test all variations (i.e. combinations
of input) of each test case (Zielczynski,). These input
variations are hidden in the statements or conditions
that guide actions and activities in the AUT (business
rules).

The validity of the inferred dynamic invariants
(i.e. the inferred program behaviour) is tested against
as many execution paths of the AUT as possible, using
symbolic execution of the AUT. Intuitively, if there is
an execution path, which violates a (combination of)
dynamic invariant(s), then a logical error may exist,
which affects the variable(s) referred in the invariant.

3.2 Symbolic execution for verifying
dynamic invariants

PLATO converts the likely invariants into Java as-
sertions and instruments them into the source code.
For example, let us consider that the invariant
p!=null holds true when the execution flow enters
a method. In this case, PLATO creates the asser-
tion [assert (p!=null);] and instruments it at
the beginning of that method, just before any other
method execution. Likely dynamic invariants are
filtered according to two filtering criteria: invari-
ants concerning variables which affect the execu-
tion flow and invariants related to source code meth-
ods which are tied to known application vulnerabil-
ities (Martin and Barnum, 2008)(Harold, 2006). For
the former, we particularly focus on the condi-
tional expressions in branches and loops. The
latter is implemented by using a taxonomy that
classifies source code methods according to their
danger level. This taxonomy is embedded in
PLATO and is based on the taxonomies presented
in (Martin and Barnum, 2008), the Oracle’s Java Tax-
onomy (Gosling et al., 2014)(jap, 2015) and reports
from code audits (Hovemeyer and Pugh, 2004). More
information on this taxonomy is provided in Section
4.2.1 which covers technical details.

Daikon’s invariants are then cross-checked with
a set of finite execution paths and their variable
valuations for each tested path. For this purpose,
PLATO obviously needs execution paths that ade-
quately cover the functionality of the AUT. PLATO
leverages NASA’s JPF tool to execute the AUT
symbolically. Specifically, we developed an exten-
sion listener for Java Symbolic PathFinder’s (SPF)
to collaborate with PLATO, named PlatoListener.
SPF symbolically executes Java byte-code programs
(pf, 2015). One of its main features is automated
generation of test inputs to explore a high number of
different execution paths of an AUT. Our PlatoLis-
tener realized a listener extension able to monitor
AUT states and paths during SPF’s constraint solv-
ing and path traversal. This way it managed to evalu-
ate invariant assertions as instrumented and executed
through the model checker.

3.3 Fuzzy Logic classification of
detections

It is not true that all the logical errors can divert
the programs’ execution to exploitable states and that
they have comparable impact on the functionality of
an AUT. Thus, similarly to a code auditor’s reasoning,
PLATO classifies detections using a fuzzy set theory

approach combined with two advanced classification
functions. Every assertion violation along with a exe-
cution path are classified into two different groups of
sets:

e the Severity sets, which quantify the danger level
of the execution path, i.e. the impact that an ex-
ploitable error would have, if it would be mani-
fested on that path;

e the Reliability sets, which quantify the overall re-
liability of an execution path based on the size and
the complexity of the code traversed in it (a code
metric is used named Cyclomatic Density).

With this fuzzy logic approach, we also aim to
confront two inherent problems in automated logical
error detection: the large data sets of the processed
AUT execution paths. PLATO helps the code audi-
tor to focus only to those path transitions that appear
having high ratings in the classification system.

3.3.1 Severity

For an execution path m, Severiry(m) measures Ts
membership degree in a Severity fuzzy set that re-
flects how dangerous is a flaw if it were to manifest
in path , i.e. its relative impact. Execution path
7 is weighted based on how its transitions and cor-
responding executed source code methods affect the
program’s execution: if there are transitions in the
path that are known to manifest exploitable behaviour,
then 7 is considered dangerous and is assigned higher
Severity ranks.

Definition 1. Given the execution path 7, we define
Severity(n) =v € [1,5]

to measure the severity of ® on a Likert-type scale
from 1 to 5.

Likert scales are a convenient way to quantify
facts (Albaum, 1997) that, in our case, refer to a pro-
gram’s flow. If an exploitable behaviour were to man-
ifest in an execution path, the scale-range captures
the intensity of its impact in the program’s control
flow. In order to weight paths, Severity is based on the
Statistical Information Gain, a measure used to clas-
sify execution paths in one out of five Severity cate-
gories that are ranked from one to five. Categories are
then grouped into Fuzzy Logic sets using labels: high
severity (4-5), medium (3) or low (1 or 2).

3.3.2 Measuring Severity of execution paths
using its Statistical Information Gain

Our Severity classification approach is based on
the Expected Information Gain (aka Expected En-
tropy Loss) statistical measure (Abramson, 1964)

Rank Example of classified methods Set of Attributes
Low javax.servlet.http.Cookie (new Cookie()) Set 1 (Level 1)
Low java.lang.reflection.Field.set() Set 2 (Level 2)
Medium | java.io.PipedInputStream (new PipedInputStream()) | Set 3 (Level 3)
High java.io.FileInputStream (new FileInputStream()) Set 4 (Level 4)
High java.sql.PreparedStatement.prepareStatement() Set 5 (Level 5)

Table 1: Severity classification examples - Data input methods

that has been successful in feature selection for in-
formation retrieval (Etzkorn and Davis, 1997). In-
formation Gain has been used before by Glover
et al. (Glover et al., 2001) and Ugurel et al.
(Ugurel et al., 2002) for classifying source code.
Here, we use it to classify execution paths and their
corresponding source code methods into danger lev-
els.

To measure the Expected Information Gain of
an execution path, we need characteristics (features)
to look for. PLATO uses a taxonomy of dan-
gerous source code methods. These methods are
recorded to be tied to known vulnerability types
(Martin and Barnum, 2008),(nvd, 2015). The taxon-
omy is divided into 5 subsets of source code meth-
ods that act as sets of attributes to classify execution
paths. Each subset’s code methods are considered to
have the same impact level (i.e. they are known to be
involved in similar types of vulnerabilities). Each set
is characterized by a number on the Likert scale (1 to
5) depicting the danger level of its source code meth-
ods: Set 1 contains the least dangerous methods while
Set 5 contains the most dangerous source code meth-
ods, known to be involved in many critical vulnerabil-
ities. For example, the System.exec() source code
method is known to be tied to OS injection vulnerabil-
ities (Martin and Barnum, 2008). Therefore exec ()
is grouped in Set 5 of the taxonomy. Severity rat-
ings are applied by classifying each execution path
into one of these five Severity sets of attributes which
correspond to specific impact levels.

In the following paragraphs, we provide a brief de-
scription of this theory (Abramson, 1964). Let Pr(C)
be the probability of a transition in the path that in-
dicates that the path is considered dangerous. Pr(C)
is quantified as the ratio of the dangerous source code
methods over the total number of methods in the path.
Let f be the event that a specific source code method
or statement exists in the path. We also denote by C
and f the negations of C and f.

The prior entropy e is the probability distribution
that expresses how certain we are that an execution
path is considered dangerous, before feature f is taken
into account:

e = —Pr(C)1gPr(C) — Pr(C)1gPr(C) (1)

where Ig is the binary logarithm (logarithm to the base
2). The posterior entropy, when feature f has been
detected in the path is

ey = —Pr(C|f)1gPr(C|f) — Pr(C|f)igPr(C|f) (2)

whereas the posterior entropy, when the feature is ab-
sent is

e = —Pr(C|f)1gPr(C|f) — Pr(C|f)1gPr(C|f) (3)
Thus, the expected overall posterior entropy (EOPE)
is given by

EOPE = esPr(f) +ezPr(f) 4)
and the expected Information Gain (EIG) for a given
feature f is

EIG:e—efPr(f)—efPr(f) 5)

The higher the EIG for a given set of attributes of
source code methods f, the more certain we are that
this set f best describes the execution path.

Similarly to (Ugurel et al., 2002), EIG is calcu-
lated based on ratios between source code methods
in a path that are considered dangerous (e.g. meth-
ods executing data, like exec()) and the total num-
ber of source code methods executed in the transi-
tions of each execution path. The taxonomy of Java
source code methods acts as the sets of attributes (cor-
responding to the event f in the above equations). Ex-
ample source code methods of the taxonomy and their
classification into sets of attributes are given in Ta-
ble 1 below. Different classification ranks reflect the
different danger level. More technical details on the
taxonomy are given in Section 4.2.1.

Severity (7) basically tells us which set of at-
tributes best characterizes a path 7; the one that ex-
hibits the highest overall EIG. Since each set of at-
tributes f is tied to a specific impact (danger) level,
then this level also indicates the danger level of the
corresponding execution path.

3.3.3 Reliability

As a measuring function, Reliability is used to clas-
sify execution paths into Reliability sets. It quantifies
how reliable an execution path is by computing the
likelihood that an exploitable behavior is manifested
in a variable usage.

Definition 2. Given the execution path 7, with a set
of state variables, we define Reliability as

Reliability(n) = v € [1,5]

to measure the reliability of 7 on a Likert scale from
1to5.

Similarly to the Severity function, our fuzzy logic
system classifies execution paths in categories: high
severity (4-5), medium (3) or low (1 or 2).

3.3.4 Measuring code Reliability with
Cyclomatic Density

The inherent risk or risk build-up of an AUT
is connected to its source code’s complexity
(Chhabra and Bansal, 2014). A broadly accepted
measure is the well-known Cyclomatic Complexity
(Bray et al., 1997) that measures the maximum num-
ber of linearly independent circuits in a program’s
control flow graph (Gill and Kemerer, 1991). The
original McCabe metric is defined as

V(G)=e—n+2

where V(G) is the cyclomatic complexity of the flow
graph G of a program, e is the number of edges and n
is the number of nodes in the graph. McCabe showed
that V(G) can be computed by applying the following
steps (Hansen, 1978):

1. increment by one for every IF, CASE or other al-
ternate execution construct;

2. increment by one for every DO, DO-WHILE or
other repetitive construct;

3. add two less than the number of logical alterna-
tives in a CASE;

4. add one for each logical operator (AND, OR) in
an IF.

However, Cyclomatic Complexity does not take
into consideration the size of the analyzed code. Re-
search conducted in the Software Assurance Tech-
nology Center of NASA has showed that the
most effective evaluation of the inherent risk of
an AUT should be based on a combination of
the (cyclomatic) complexity and the code’s size
(Rosenberg and Hammer, 1998). Modules with both
a high complexity and a large size tend to have the
lowest reliability. Modules with smaller size and high
complexity are also a reliability risk, because they
feature very terse code, which is difficult to change
or to be modified.

To this end, PLATO implements heuristics that as-
sign Reliability ratings to execution paths through a
cyclomatic density analysis. The proposed method is
based on McCabe’s algorithm and the computation

of the Cyclomatic Density for each execution path.
The Cyclomatic Density is the ratio of the Cyclomatic
Complexity to the logical lines-of-code, which mea-
sures the number of executable “statements” in the
path (some statements are excluded like for example
a variable assignment) (McC, 2015). This ratio repre-
sents the normalized complexity of the source code of
an execution path 7 and it is considered a statistically
significant single-value predictor of code’s maintain-
ability (Rosenberg and Hammer, 1998)(McC, 2015).
The higher the Cyclomatic density value, the
denser the logic. Thus, low output values
from the Reliability classification function re-
flect reliable paths, whereas high values re-
flect complex, error-prone code. Related re-
search (Rosenberg and Hammer, 1998)(McC, 2015)
proposes that Cyclomatic Density values for the code
to be simple and comprehensible should be in the
range of .14 to .42 .

Rank Example of classified methods | Lvl

Safe Cycl.Density <= 0.1 1
Cycl.Density >0.1 &&

S Cycl.Density <= 0.2 2
Cycl.Density >0.2 &&

Average Cycl.Density <=0.3 .
Cycl.Density >0.3 &&

ool Cycl.Density <= 0.4 .

ErrorProne | Cycl. Density >0.4 5

Table 2: Reliability categories based on Cyclomatic Density
values

Each path is assigned a density value. The
higher the value, the more complex the logic of
the traversed code is and therefore more likely
to have logical errors lurking in its transitions
(Rosenberg and Hammer, 1998)(McC, 2015). Table
2 depicts the classification categories for execution
paths that can be applied using the Reliability clas-
sification function.

3.3.5 Risk: Combining Severity and Reliability
ratings

According to OWASP, the standard risk formulation
is an operation over the likelihood and the impact of
a finding (Martin and Barnum, 2008):

Risk = Likelihood x Impact

We adopt this notion of risk to enhance the logical
error classification approach. For each execution path
, an estimate of the associated risk is computed by
combining Severity(nt) and Reliability(n). Aggrega-
tion operations combine several fuzzy sets to produce
a single fuzzy set. The Risk rank of an execution path

IF Severity = low AND Reliability = low THEN Risk = low

Figure 1: Example of a Fuzzy Logic rule

7 is calculated using Fuzzy Logic’s IF-THEN rules.
An example is given in Figure 1.

The fuzzy logic classification system uses the fol-
lowing membership sets for ranks 1 to 5. For each
pair (a, b), a depicts the rank value and b depicts
the membership percentage of that rank in the corre-
sponding set. For example, Severity-Medium = (2.5,
1) means that an output rank of 2.5 is a member if the
Medium Severity set with 100% (1) certainty. This
way PLATO plots ranks 1 to 5 into membership sets.
The rest of all intermediate values are plotted based
on the mathematical equation defined by these points
(a, b):

1. The Severity set: partitions the [1..5] impact
scale to groups Low, Medium and High as: Low
=(0,1) (3,0), M =(1.5,0) (2.5,1) (3.5,0), H =(3,0) (5,
1).

2. The Reliability set: partitions the [1..10] time
scale to groups Early, Medium, Late and Very Late
periods as: Low =(0, 1) (1, 1) (3,0), Medium =(0, 0)
(3, 1) (5, 0), High =(0,0) (5,1).

By using the pre-computed tables with all ex-
pected values for Severity and Reliability, it is now
possible to assess the fuzzy estimation of the Risk val-
ues, for a given logical error detection.

Risk calculations are performed as follows: Ini-
tially, the appropriate IF-THEN rules are invoked and
generate a result for each rule. Then these results are
combined to output truth values. Each IF-THEN re-
sult is, essentially, a membership function and truth
value controlling the output set, i.e. the linguistic
variables Severity and Reliability. The membership
Percentages concerning Risk indicate the Risk group
(Low, Medium or High) that a logical error belongs
to.

Table 3 shows the fuzzy logic output for Risk,
based on the aggregation of Severity and Reliability.

Rellty SV | | Medium | High
Safe Low Low Medium

Medium Low Medium High

Error-Prone Medium High High

Table 3: Severity x Reliability = R - Risk sets

Risk, Severity and Reliability ratings are supple-
mentary to invariant violations and do not provide the
basic mechanism for logical error detection; they just
provide a more clear view for the code auditor. Also,
high Severity rankings have more weight than Relia-

bility rankings. Rightmost maximum is found to have
closer-to-the-truth ranking results since Severity rat-
ings take into consideration source code methods exe-
cuted inside path transitions whilst Reliability ratings
provide only a generic view of the execution path’s
overall complexity.

The Fuzzy Logic system has been im-
plemented wusing the jFuzzylogic library
(Cingolani and Alcala-Fdez, 2012).

4 A method to detect logical errors
in source code

4.1 The method’s workflow

The analysis building blocks described in section 3
and implemented in PLATO are part of our workflow
for logical error detection with the following steps:

1. Use case scenarios. We assume the existence of a
test suite with use case scenarios that exercises the
functionality of the AUT. The selected use-case
scenarios must cover the intended AUT’s func-
tionality to a sufficient degree. This can be quan-
tified by appropriate coverage metrics.

2. For each use-case scenario, a dynamic analysis
with the Daikon tool is performed. A set of in-
ferred dynamic invariants is obtained that charac-
terize the functionality of the AUT based on the
executed use case scenarios.

3. Daikon invariants are loaded in PLATO and are
processed as follows:

e The inferred dynamic invariants are filtered
by PLATO, in order to use only those refer-
ring to high-risk transitions, i.e. (i) statements
that affect the program’s execution flow, and
(i1) source code methods that are connected to
the manifestation of exploitable behaviour (e.g.
method System.exec() for executing OS com-
mands with user input).

e PLATO instruments the AUT code with
the critical dynamic invariants, which are
embedded into the code as Java assertions
(Martin and Barnum, 2008).

The instrumented source code is symboli-
cally executed in NASA’s JPF tool with our
PlatolListener extension. A sufficiently large

number of feasible execution paths has to be cov-
ered, far more than the initial use case scenarios
covering the intended functionality. JPF relies on
the PlatoListener so as to check for existing as-
sertion violations and then flags the invariants in-
volved.

4. PLATO gathers PlatoListener detections
and classifies each of them into Severity and Re-
liability levels. A Risk value is then computed
using Fuzzy Logic. The more suspicious an in-
variant violation and its corresponding execution
path is, the higher it scores in the Risk scale.

PLATO accepts input from Daikon (step 2) and
automates the analysis of the source in step 3. Fi-
nally, the PlatoListener is used in step 4 for monitor-
ing JPF’s symbolic execution.

4.2 C(Classifying execution paths

Following Oracle’s JAVA API
and the related documentation in
((Harold, 2006)(Gosling et al., 2014)(jap, 2015)),
three categories of Java source code methods are
proposed for the classification of execution paths
with respect to their Severity and Reliability values.
Severity ranking is based on (i) Input Vectors and (ii)
potentially exploitable methods (sinks). Reliability
ranking is based on (iii) Control Flow checks (e.g.
if-statements).

4.2.1 A Taxonomony of source code methods for
Severity calculations

About 159 Java methods were reviewed and then
grouped into sets depicting danger levels. These sets
are used as features in the Information Gain algorithm
to compute the Severity rating of execution paths.
Classified source code methods were gathered from
NIST’s Software Assurance Reference Dataset suites
(SARD) (Boland and Black, 2012), a set of known se-
curity flaws together with source code test-beds.

Five sets of attributes are proposed, correspond-
ing to five danger levels from 1 to 5. The taxonomy
was based on rankings of bugs and vulnerabilities
recorded in NIST’s National Vulnerability Database
(NVD) (nvd, 2015), the U.S. government repository
of standards based vulnerability management data.
NVD provides scores that represent the innate charac-
teristics of each vulnerability using the CVSS scoring
system (nvd, 2015), which is an open and standard-
ized method for rating IT vulnerabilities.

Thus, each source code method in the taxonomy
is assigned to the set of attributes representing the ap-
propriate danger level. The correct set of attributes is

inferred based on the CVSS scores in the NVD repos-
itory. This was implemented using the following al-
gorithm:

1. For each source code method, we checked the
lowest and highest ratings of NVD vulnerabilities
that use this source code method !.

2. The characteristics of the identified vulnerabilities
are then inputed in the CVSS 3.0 scoring calcula-
tor 2, in order to calculate the lowest and highest
possible vulnerability scores.

3. Each source code method was then added in a set
of attributes corresponding to the result of previ-
ous step. Source code methods detected in vul-
nerabilities with scores 7 or above were grouped
in Set 5. Methods with score 6 to 7 in Set 4, those
with score 5 to 6 in Set 3, those with score 4 to 5
in Set 2 and those with score 1 to 4 in Set 1.

Example: The java.lang.Runtime.exec() source
code method (jap, 2015) is widely-known to be used
in many OS command injection exploits. NVD vul-
nerabilities recorded using this source code method
have an impact rating ranging from 6.5 up to 10 out
of 10. Using the characteristics of these records, the
CVSS scoring calculator outputted a rating of high
(7) to very high (10). This was expected, because
exec() is often used to execute code with application
level privileges. Thus, the System.exec() method
was classified in PLATO’s taxonomy in the very high
(5/5) danger level category.

Tables 4 and 5 provide examples for various types.
For the full taxonomy, the reader can access the link
at the end of this article.

java.io.BufferedReader.readLine()
java.io.ByteArrayInputStream.read()
java.lang.System.getenv()

Table 4: Example group - Input Vector Methods taxonomy

java.lang.Runtime.exec()
java.sql.Statement.executeQuery()
java.lang.System.setProperty()
java.io.File (new File())

Table 5: Example group - Sink methods taxonomy

4.2.2 Statements and methods for Reliability
calculations

Computing the Cyclomatic Density of a source code
is tied to the number of execution-branch statements

'bugs were gathered from the NVD repository:
https://web.nvd.nist.gov/view/vuln/search-advanced
https://www.first.org/cvss/calculator/3.0

inside the code. Thus, Reliability calculations take
into consideration Java statements that affect the pro-
gram’s control flow.

o Control Flow statements

According to (Harold, 2006) and
(Felmetsger et al., 2010), boolean expressions
determine the control flow. Such expressions are
found in the statements shown in Figure 2.

(1) if-statements (§14.9)

(2) switch-statements (§14.11)
(3) while-statements (§14.12)
(4) do-statements (§14.13)

(5) for-statements (§14.14)

Figure 2: Example types of methods and statements in-
cluded in PLATO’s taxonomy

All source code methods from the mentioned
types were gathered from the official Java documen-
tation (jap, 2015)(Harold, 2006) and are used for the
computations of the Cyclomatic Density algorithm of
Section 3.3.4.

S Experimental results

We are not aware of any commercial, stand-alone
suite or open-source revision(s) of software with a re-
ported set of existing logical errors to use as a test-
ing ground. Also, testing is restricted by JPF’s lim-
itations in symbolically executing software. For this
reason, our experiments were selected as to contain
real-world implementations of source code with dif-
ferent types of logical flaws often detected in real-
world code audits, in an effort to prove that diverse
types of logical errors can be detected and ranked ef-
fectively.

5.1 Experiment 1: real-world airline
test from the SIR Object Database

The Software-artifact Infrastructure Repository (SIR)
(Rothermel et al., 2006) is a repository of software ar-
tifacts that supports controlled experimentation with
program analysis and software testing techniques
(Do et al., 2005), (Wright et al., 2010).

Our method was tested against a real-world AUT
from the SIR repository, which exhibits the character-
istics of a multithreaded activity requiring arbitration.
The AUT was a multi-threaded Java program for an
airline to sell tickets. The fact that this is a known
and well-documented error that can be detected using
different techniques (e.g. model checking) does not

cancel the goal of this experiment, which was to show
that our method can also detect logical errors that re-
sult in race conditions. This particular race condi-
tion is not detected through model checking but rather
through an inferred invariant violation, thus providing
that invariant violation method can be used to detect
the subset of logical errors that produce race condi-
tions.

The logical error. The logical error manifested in
this example leads to a race condition causing the air-
line application to sell more tickets than the available
airplane seats. Each time the program sells a ticket, it
checks if the agents had previously sold all the seats.
If yes, the program stops the processing of additional
transactions. Variable StopSales indicates that all
the available tickets were sold and that issuing new
tickets should be stopped. The logical error manifests
when StopSales is updated by selling posts and, at
the time more tickets are sold by the running threads
(agents). The AUT’s code is shown in Figure 3.

for{ int i=0; i < threadarr.length; i++) {
try {
threadarrli] = new Thread (this) ;
if(StopSales){
Num Of Seats Scld--; break;
}
threadarr[i].start(}; // "make the sale
tcatch (ArravIndexOutOfBoundsException z) {..}

Figure 3: SIR AUT example code able to create i threads
(agents) which sell tickets

PLATO’s analysis for this test returned the results
shown in Figure 4. We now present in detail the re-
sults obtained in the different steps of our workflow:

Step 1-2. There is only one function point to test.

o Single test-case: Functionality has only one flow
of events (multithreaded server accepting ticket
sale information and registering them).

e Numerous test-case variations: Infinite possible
variations for input (number of seats and cushion
to limit maximum saling of tickets).

Thus, we executed 20 variations of the test-case
for the airline server functionality, while trying to uti-
lize boundary values as input. Daikon monitored in-
puts ranging from 1 seat with 1 sailing agent limit up
to 1000 seats with 1000 agents and extracted the fol-
lowing invariant amongst others:

Num _Of _Seats _Sold <= this.Maximum _Capacity

Step 3. Dynamic invariants were instrumented in
the source code and the software was symbolically
executed in JPF. An assertion violation was detected
for the method runBug() : two executions were found

SIR object - Airline sales software

Mum of Invariants Violated

MNum of Invariants Enforced

Invariants in High Severity paths

Mumn of Paths tested

o 10

2
Invariants inferred by Daikon g!

20 30 40 50 60 70

Figure 4: Airline sales: No of inferred invariants, chosen assertions and violations

where the mentioned invariant was enforced and vi-
olated respectively, thus implying a possible logical
error.

Step 4. Our method classified the path in which
the invariant assertion was violated with a Severity =
5 score and a Reliability = 3, thus yielding a total
Risk value of 4.5.

5.2 Experiment 2: Multiple execution
path classification for logical errors

To test the proposed classification method imple-
mented inside PLATO, we needed to execute it on an
appropriate test suite. We had two options: Either
utilize open-source applications or artificially made”
programs, common in benchmarking various source
code analysis tools. Both options have positive and
negative characteristics.

To this end, we endorsed the National Se-
curity Agency’s (NSA) comparison results from
(Agency, 2011) and (Agency, 2012), which state that
“the benefits of using artificial code outweigh the
associated disadvantages” when testing source code
analysis tools. Therefore, we created a test-bed
application based on the source code provided by
NIST’s Juliet Test Case suite, a formal collection of
artificially-made programs (Boland and Black, 2012)
packed with well-known and recorded exploits. The
Juliet Test Suite is ”a collection of over 81.000 syn-
thetic C/C++ and Java programs with a priori known
flaws. The suites Java tests contain cases for 112 dif-
ferent CWEs (exploits)” (Boland and Black, 2012).
Each test case focuses on one type of flaw, but some
tests contain multiple flaws. Each test has a bad()
method in each test-program that manifests an exploit.
A good() method is essentially a safe way of coding
(true negative).

For our purposes we created an test suite that is,
essentially, an aggregation of multiple Juliet test filled
with various vulnerabilities of different danger-level;
ranging from medium information leakage to serious
OS execution injection. The test suit had both true
positives and true negatives. The CWE types of vul-
nerabilities that manifested inside the analyzed test
suite, as defined in NIST’s formal CWE taxonomy
(?), were: CWE-840 (business logic errors), CWE-
78 (OS Command Injection) and CWE-315 (Cleartext
Storage of Sensitive Information in a Cookie).

Test scores and Information Gain output for dan-
gerous source code methods detected in execution
paths are provided at Table 6. We can see from ta-
ble 6 that PLATO’s classification system yielded an
overall Severity Rank = 3 out of 5 for the aggregated
test suite but ranked specific individual paths with a
Severity Rank = 5 out of 5. Interestingly, the execu-
tion paths that scored the highest were manifesting the
most dangerous vulnerability of all flaws present in
the AUT (CWE-79, OS command injection). This can
be seen from the fact that te most dangerous (Rank 4)
source code methods detected in dangerous paths in-
side the AUT presented the highest Gain (0.2423) on
both occasions; thus scoring higher than all the rest.
As seen in table 6, the first highest-ranked method is
the exec() (Rank 4) method which is a sink utilized
for OS command injection exploits.

PLATO’s Severity mechanism (i) detected all
paths prone to vulnerabilities due to the use of dan-
gerous source code methods, and (ii) successfully
ranked them to appropriate danger-levels based on
their flaws; thus effectively representing their danger-
level. We should underline here that this experiment
was executed in order to demonstrate the classifica-
tion capabilities of the Severity function. Data pro-
vided refer only to the classification mechanism.

Table 6: Experiment 2: Information Gain classification

Entire Source code - Prior Entropy 0.402179
Entire Source code - Prior Severity 3

Entropy Loss for println(Rank 2) 0.162292
Entropy Loss for readLine(Rank 4) 0.242292
Entropy Loss for addCookie(Rank 2) 0.162292
Entropy Loss for exec(Rank 4) 0.242292
Entropy Loss for getPassword(Rank 2) | 0.162292
Entropy Loss for getUserName Rank 2) | 0.162292

6 Discussion and comparisons

Although PLATOQO’s detection rate was close to
100% success, still, the sample upon which PLATO
was tested still remains very small to claim such a
high average detection rate. The applicability of the
method presented depends on how thoroughly the in-
put vectors and dynamic invariants are analyzed. Cur-
rently, PLATO can analyze invariants and detect log-
ical errors that can manifest as vulnerabilities as long
as they are recorded in NIST source code vulnerabil-
ity suites in order to train our Severity classifier.

State explosion remains a major issue, since it is
a problem inherited by the used analysis techniques.
Yet, state explosion seems manageable using execu-
tion path classification and, although not tested in re-
ally large applications due to the aforementioned re-
striction, our test results imply this.

6.1 Advantages and Limitations

One of our method’s limitations is the need for in-
put data from live execution of AUTSs, while Daikon
infers the likely dynamic invariants. This is an inher-
ent problem in all empirical methods, since empiri-
cal approaches rely on repetitive observations to form
rules. Our method does not model the business logic
of AUTs using formal methods, but is rather depen-
dent on the soundness of the likely dynamic invariants
provided by Daikon and the various executions of the
AUT. If PLATO were to examine AUTs of thousands
of source code lines in entirety, problems would arise,
mostly due to JPF’s inability to handle large, complex
applications and also due to state explosion.

Although empirical methods are often criticized
for the lack of sound foundations in software engi-
neering, it is obvious that, in order for a tool to detect
flaws in the logic of applications, it needs to model
knowledge that reflects intended functionality.

Also, (provided that it is executed in the correct
manner and that it covers the entire functionality of
an AUT) Daikon’s output does reflect the AUT’s in-
tended functionality, since its dynamic invariants are

properties that were true over the observed executions
(Ernst et al., 2007). PLATO’s results enforce this no-
tion.

Based on the above notion and our tests, we drew
some significant conclusions:

e PLATO can indeed detect logical errors in ap-
plications using reasonable limits in the size and
complexity of AUTs, something no other tool can
claim at the time this article was written.

e Results have shown that this method goes beyond
logical error detection and can provide valid de-
tections of other types of flaws. The unexpected
detection of race conditions in one of our experi-
ments, although it was an unintended side effect,
proved this to be the case. As shown in previous
results, limiting a variables value in an airplane
ticket store not only led to a logical error that was
essentially a race condition flaw, but also to a log-
ical vulnerability that could lead the airline to sell
more tickets that its seats.

e Logical errors must be detected using productive
reasoning and not inductive because logical er-
rors can manifest in widely different contexts. For
example, a race condition can lead to a logical
vulnerability and is indeed a subtype of logical
programming errors, but it can also lead to other
types of errors (null pointer exception, division
by zero etc.) or even to no errors at all. In-
stead, PLATO’s deductive approach, not only de-
tects different types of logical errors but also pro-
vides insight on the impact of each error.

REFERENCES

(2015). Common vulnerabilities and exposures, us-cert,
mitre, CVE. MITRE, CVE-ID CVE-2014-0160.

(2015). The daikon invariant detector manual.

(2015). The java pathfinder tool.

(2015). Java platform, standard edition 7 api specification.

(2015). National vulnerability database. [online]
http://nvd.nist.gov

(2015). Using code quality metrics in management of out-
sourced development and maintenance.

Abramson, N. A. (1964). Introduction to Information The-
ory and Coding. McGraw Hill.

Agency, N. S. (2011). NSA, On Analyzing Static Analysis
Tools. National Security Agency.

Agency, N. S. (2012). NSA,Static Analysis Tool Study-
Methodology. National Security Agency.

Albaum, G. (1997). The likert scale revisited. Journal-
Market research society, 39:331-348.

Baah, G. K. (2012). Statistical causal analysis for fault lo-
calization.

Balzarotti, D., Cova, M., Felmetsger, V. V., and Vigna, G.
(2007). Multi-module vulnerability analysis of web-
based applications. In Proceedings of the 14th ACM
conference on Computer and communications secu-
rity, pages 25-35. ACM.

Boland, T. and Black, P. E. (2012). Juliet 1.1 c/c++ and java
test suite. Computer, (10):88-90.

Bray, M., Brune, K., Fisher, D. A., Foreman, J., and Gerken,
M. (1997). C4 software technology reference guide-a
prototype. Technical report, DTIC Document.

Chhabra, P. and Bansal, L. (2014). An effective implemen-
tation of improved halstead metrics for software pa-
rameters analysis.

Cingolani, P. and Alcala-Fdez, J. (2012). jfuzzylogic: a
robust and flexible fuzzy-logic inference system lan-
guage implementation. In FUZZ-IEEE, pages 1-8.
Citeseer.

Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405-435.

Doupé, A., Boe, B., Kruegel, C., and Vigna, G. (2011).
Fear the ear: discovering and mitigating execution af-
ter redirect vulnerabilities. In Proceedings of the 18th
ACM conference on Computer and communications
security, pages 251-262. ACM.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant,
S., Pacheco, C., Tschantz, M. S., and Xiao, C.
(2007). The daikon system for dynamic detection of
likely invariants. Science of Computer Programming,
69(1):35-45.

Etzkorn, L. H. and Davis, C. G. (1997). Automati-
cally identifying reusable oo legacy code. Computer,
30(10):66-71.

Felmetsger, V., Cavedon, L., Kruegel, C., and Vigna, G.
(2010). Toward automated detection of logic vulnera-
bilities in web applications. In USENIX Security Sym-
posium, pages 143-160.

Gill, G. K. and Kemerer, C. F. (1991). Cyclomatic com-
plexity density and software maintenance productiv-
ity. Software Engineering, IEEE Transactions on,
17(12):1284-1288.

Glover, E. J., Flake, G. W., Lawrence, S., Birmingham,
W. P, Kruger, A., Giles, C. L., and Pennock, D. M.
(2001). Improving category specific web search by
learning query modifications. In Applications and
the Internet, 2001. Proceedings. 2001 Symposium on,
pages 23-32. IEEE.

Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart:
Directed automated random testing. SIGPLAN Not.,
40(6):213-223.

Gosling, J., Joy, B., Steele Jr, G. L., Bracha, G., and Buck-
ley, A. (2014). The Java Language Specification.
Pearson Education.

Hansen, W. J. (1978). Measurement of program complexity
by the pair:(cyclomatic number, operator count). ACM
SIGPLan Notices, 13(3):29-33.

Harold, E. R. (2006). Java I/0. ” O’Reilly Media, Inc.”.

Hovemeyer, D. and Pugh, W. (2004). Finding bugs is easy.
ACM Sigplan Notices, 39(12):92-106.

Martin, R. A. and Barnum, S. (2008). Common weakness
enumeration (cwe) status update. ACM SIGAda Ada
Letters, 28(1):88-91.

Pésdreanu, C. S. and Visser, W. (2004). Verification of java
programs using symbolic execution and invariant gen-
eration. In Model Checking Software, pages 164—181.
Springer.

Peng, W. W. and Wallace, D. R. (1993). Software error
analysis. NIST Special Publication, 500:209.

Rosenberg, L. and Hammer, T. (1998). Metrics for quality
assurance and risk assessment. Proc. Eleventh Inter-
national Software Quality Week, San Francisco, CA.

Rothermel, G., Elbaum, S., Kinneer, A., and Do, H. (2006).
Software-artifact infrastructure repository.

Scarfone, K. A., Grance, T., and Masone, K. (2008). Sp
800-61 rev. 1. computer security incident handling
guide. Technical report, Gaithersburg, MD, United
States.

Stergiopoulos, G., Katsaros, P., and Gritzalis, D. (2014).
Automated detection of logical errors in programs. In
Proc. of the 9th International Conference on Risks &
Security of Internet and Systems.

Stergiopoulos, G., Petsanas, P., Katsaros, P., and Gritzalis,
D. (2015a). Automated exploit detection using path
profiling - the disposition should matter, not the posi-
tion. In Proceedings of the 12th International Confer-
ence on Security and Cryptography, pages 100—111.

Stergiopoulos, G., Theoharidou, M., and Gritzalis, D.
(2015b). Using logical error detection in remote-
terminal units to predict initiating events of critical in-
frastructures failures. In Proc. of the 3rd International
Conference on Human Aspects of Information Secu-
rity, Privacy and Trust (HCI-2015), Springer, USA.

Stergiopoulos, G., Tsoumas, B., and Gritzalis, D. (2012).
Hunting application-level logical errors. In Engi-
neering Secure Software and Systems, pages 135-142.
Springer.

Stergiopoulos, G., Tsoumas, B., and Gritzalis, D. (2013).
On business logic vulnerabilities hunting: The
app-loggic framework. In Network and System Secu-
rity, pages 236-249. Springer.

Ugurel, S., Krovetz, R., and Giles, C. L. (2002). What’s
the code?: automatic classification of source code
archives. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 632-638. ACM.

Wright, H. K., Kim, M., and Perry, D. E. (2010). Validity
concerns in software engineering research. In Pro-
ceedings of the FSE/SDP workshop on Future of soft-
ware engineering research, pages 411-414. ACM.

Zeller, A. (2002). Isolating cause-effect chains from com-
puter programs. In Proceedings of the 10th ACM SIG-
SOFT symposium on Foundations of software engi-
neering, pages 1-10. ACM.

Zhang, X., Gupta, N., and Gupta, R. (2006). Locating faults
through automated predicate switching. In Proceed-
ings of the 28th international conference on Software
engineering, pages 272-281. ACM.

Zielczynski, P. Traceability from use cases to test cases.

